Archive

Archive for the ‘bioeconomics’ Category

Resilience to climate change in agricultural systems

June 1, 2017 Leave a comment

Climate change is impacting agroecosystems widely. Ecological connectivity makes regions more resilient and hence helps conserve biodiversity and combat climate change, while ecologically sound analysis and management help keep agroecosystems alive. In this context, a bioeconomic approach may help guide the integration of natural and human systems. In Umbria, the origin of this approach was the opening lecture of TreviNatura (Trevi, Italy 25-27 October 2015) delivered by Professor Andrew P. Gutierrez (CASAS Global) and titled  “The economy of nature and humans: the role of ecosystem services” that illustrated the often conflicting interaction between humans and nature, and how this interaction can be best understood using bioeconomics, with ecosystem services playing a central role. The region of Umbria in Central Italy is particularly amenable to developing and implementing a holistic approach to the integrated management of agricultural and natural ecosystems, because this region has pioneered biodiversity conservation and management at both national and European level, and it is about to deploy a third improved version of its Regional Ecological Network. Notably, the local environmental protection agency ARPA Umbria is committed to a systemic vision of the environment where the different components (e.g., agricultural, natural, urban) interact in complex ways and hence may not be managed separately. This commitment will build capacity by developing specific research projects, higher education, and training. The Workshop “Biodiversity for ecologically based resilience to climate change in agricultural systems” was a key step for developing a Summer School on Agroecology, to be held during 2018 at the Polvese Island’s Research Center for Climate Change and Biodiversity in Wetlands and Lakes (see the draft program for the Center).

Workshop – Biodiversity for ecologically based resilience to climate change in agricultural systems. Department of Agricultural, Food and Environmental Sciences, University of Perugia, Italy, 31 May 2017. Program and info

Bt cotton in India: critique of a macro analysis

March 13, 2017 Leave a comment

This paper is a critique of Srivastava and Kolady (Current Science, 2016; 110: 3-10) who reported a macro analysis of the benefits of Bt cotton in India using statewide average data. The analysis is in error with respect to the economic benefits, biological underpinnings, and the effects of Bt cotton technology adoption on resource-poor farmers growing rainfed cotton. Viable non-GMO high-density cotton alternatives that increase yields, reduce cost of production, and give higher net average returns were ignored. The authors argue for biotechnology adoption in other crops in India without providing data or analysis

Gutierrez A.P., Ponti L., Baumgärtner, J., 2017. A critique on the paper ‘Agricultural biotechnology and crop productivity: macro-level evidences on contribution of Bt cotton in India’. Current Science, 112: 690-693. Full text free to download

Trends for cotton yield, pesticide use and the percentage of total cotton growing area planted to Bt cotton.


Impact of the rosette weevil on yellow starthistle

March 13, 2017 Leave a comment

Yellow starthistle (Centaurea solstitialis L.) (YST) is an invasive weed native to the Mediterranean region with a geographical centre of diversity in Turkey. It is widely established in Chile, Australia, and western North America. It arrived in California as a contaminant in alfalfa seed in 1859 and, by 2002, had infested more than 7.7 million hectares in the U.S.A. Biological control of YST using capitula feeding weevils, picture wing flies and a foliar rust pathogen has been ongoing in the western U.S.A. for more than three decades with limited success. Modelling and field research suggest natural enemies that kill whole plants and/or reduce seed production of survivors are good candidates for successful biological control. A candidate species with some of these attributes is the rosette weevil Ceratapion basicorne (Illiger). In the present study, a model of the rosette weevil is added to an extant system model of YST and its capitula feeding natural enemies and, in a GIS context, is used to assess YST control in the Palearctic region and the weevil’s potential impact on YST in western U.S.A. The results obtained suggest densities of mature YST plants in western U.S.A. would be reduced by 70–80% in many areas.

Gutierrez A.P., Ponti L., Cristofaro M., Smith L., Pitcairn M.J., 2016. Assessing the biological control of yellow starthistle (Centaurea solstitialis L.): prospective analysis of the impact of the rosette weevil (Ceratapion basicorne (Illiger)). Agricultural and Forest Entomology, https://doi.org/10.1111/afe.12205

The rosette weevil Ceratapion basicorne.

Indian cotton: weather, yields and suicides

August 28, 2015 Leave a comment

Cotton with coevolving pests has been grown in India for more than 5000 years. Hybrid cotton was introduced in the 1970s with increases in fertilizer and in insecticide use against pink bollworm that caused outbreaks of bollworm. Hybrid Bt cotton, introduced in 2002 to control bollworm and other lepidopteran pests, is grown on more than 90 % of the cotton area. Despite initial declines, year 2013 insecticide use is at 2000 levels, yields plateaued nationally, and farmer suicides increased in some areas. Biological modeling of the pre-1970s cotton/pink bollworm system was used to examine the need for Bt cotton, conditions for its economic viability, and linkage to farmer suicides. Yields in rainfed cotton depend on timing, distribution, and quantity of monsoon rains. Pink bollworm causes damage in irrigated cotton, but not in rainfed cotton unless infested from irrigated fields. Use of Bt cotton seed and insecticide in rainfed cotton is questionable. Bt cotton may be economic in irrigated cotton, whereas costs of Bt seed and insecticide increase the risk of farmer bankruptcy in low-yield rainfed cotton. Inability to use saved seed and inadequate agronomic information trap cotton farmers on biotechnology and insecticide treadmills. Annual suicide rates in rainfed areas are inversely related to farm size and yield, and directly related to increases in Bt cotton adoption (i.e., costs). High-density short-season cottons could increase yields and reduce input costs in irrigated and rainfed cotton. Policy makers need holistic analysis before new technologies are implemented in agricultural development.

Gutierrez A.P., Ponti L., Herren H.R., Baumgärtner J., Kenmore P.E.. 2015. Deconstructing Indian cotton: weather, yields, and suicides. Environmental Sciences Europe, 27: 12. http://dx.doi.org/10.1186/s12302-015-0043-8 | Open access

Simulated phenology of cotton fruiting and pink bollworm in irrigated and rainfed cotton during 2005. The movement of adults to rainfed cotton during late summer is indicated by the broad arrow.
 

Invasive species and climate change: the PBDM approach

September 12, 2014 Leave a comment

Assessing the geographic distribution and abundance of invasive species is critical for developing sound management and/or eradication policies. Ecological niche modelling approaches (ENMs) that make implicit assumptions about biology and mathematics are commonly used to predict the potential distribution of invasive species based on their recorded distribution. An alternative approach is physiologically based demographic modelling (PBDM), which explicitly incorporates the mathematics and the observed biology, including trophic interactions, to predict the temporal phenology and dynamics of a species across wide geographic areas. The invasive weed, yellow starthistle (YST) (Centaurea solstitialis), and its interactions with annual grasses and herbivorous biological control agents is used to demonstrate the utility of the PBDM approach for analysing complex invasive species problems. The PBDM predicts the distribution and relative abundance of YST accurately across the western USA, and the results are used to assess the effects of temperature, rainfall, competition from grasses and the efficacy of biocontrol efforts. Such an effort could also be used to include the direct effects of rising carbon dioxide on YST biology. A bioeconomic model could be developed to show how the YST PBDM analysis can also be used to assess the biological and economic effects of climate change on YST infestation levels regionally. Finally, this chapter discusses the need for a unified system for assessing invasive species problems at the field, regional and global levels, with the goal of enhancing the development of efficacious policy and management decisions.

Gutierrez A.P., Ponti L., 2014. Assessing and managing the impact of climate change on invasive species: the PBDM approach. In: Ziska L.H., Dukes J.S., (eds.), Invasive Species and Global Climate Change. CABI Publishing, Wallingford, UK. ISBN: 978-1780641645. http://www.cabi.org/bookshop/book/9781780641645

Trophic interactions in the yellow starthistle PBDM system.

Olive bioeconomics under climate warming

March 25, 2014 Leave a comment

Inability to determine reliably the direction and magnitude of change in natural and agro-ecosystems due to climate change poses considerable challenge to their management. Olive is an ancient ubiquitous crop having considerable ecological and socioeconomic importance in the Mediterranean Basin. We assess the ecological and economic impact of projected 1.8 °C climate warming on olive and its obligate pest, the olive fly. This level of climate warming will have varying impact on olive yield and fly infestation levels across the Mediterranean Basin, and result in economic winners and losers. The analysis predicts areas of decreased profitability that will increase the risk of abandonment of small farms in marginal areas critical to soil and biodiversity conservation and to fire risk reduction.

Ponti L., Gutierrez A.P., Ruti P.M., Dell’Aquila A., 2014. Fine scale ecological and economic assessment of climate change on olive in the Mediterranean Basin reveals winners and losers. Proceedings of the National Academy of Sciences, USA, http://dx.doi.org/10.1073/pnas.1314437111

Bioeconomic sustainability of cellulosic biofuel production

February 23, 2010 Leave a comment

The use of marginal land (ML) for lignocellulosic biofuel production is examined for system stability, resilience, and eco-social sustainability. A North American prairie grass system and its industrialization for maximum biomass production using biotechnology and agro-technical inputs is the focus of the analysis. Demographic models of ML biomass production and ethanol farmer/producers are used to examine the stability properties of the ML system. A bio-economic model that maximizes the utility of consumption having the dynamics of MLs and the farmer/producers as dynamic constraints is used to examine the effects of increased conversion efficiency, input costs, risk, and levels of base resources and inputs on the competitive and societal solutions for biomass production. We posit ML abandonment after biofuel production ceases could lead to permanent land degradation below initial levels that prohibit the establishment of the original flora and fauna.

Gutierrez A.P., Ponti L., 2009. Bio-economic sustainability of cellulosic biofuel production on marginal lands. Bulletin of Science Technology and Society, 29: 213-225.
http://dx.doi.org/10.1177/0270467609333729